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Abstract
The formalism of factorization recently used by Atakishiyev et al (2007 J. Phys.
A: Math. Theor. 40 9311–7) to study the q-difference equation for continuous
q-Hermite polynomials is extended to the continuous q-Jacobi polynomials.
Particular cases of continuous q-Laguerre, q-Hermite, q-Legendre and
q-ultraspherical polynomials are easily recovered.

PACS numbers: 02.30.Gp, 02.30.Tb, 03.65.Db

1. Introduction

An important and necessary step toward finding numerical solutions of the ordinary differential
equations consists in their discretization. In place of the standard discretization based on the
arithmetic progression, one can use a not less efficient q-discretization related to geometric
progression [1]. This alternative method leads to q-difference equations which, in the limit
q → 1, correspond to the original differential equations. The theory of q-difference equations
and related theory of q-special functions have a long story (see, for example [2]). During
the last few decades they have been reviewed because of the great success of the theory of
quantum groups.

The other crucial way of solving ordinary differential equations is based on the
factorization method first used by Darboux [3]. We refer to [4] for an exhaustive presentation
of the factorization method.

This work provides with an extension of the results recently published by Atakishiyev
et al [5] on the continuous q-Hermite polynomials, which occupy the lowest level in the
hierachy of 4φ3 polynomials with positive orthogonality measures and admit a factorized
form Dq

xHn(x|q) = q−n/2Hn(x|q),Dq
x being some explicitly known q-difference operator

(see equation (14) in [5]). We show that, for 0 < q < 1, the continuous q-Jacobi polynomials
P

(α,β)
n (x|q) satisfy the relation Dq

x (α, β)P
(α,β)
n (x|q) = (q−n/2 + q(n+α+β+1)/2)P

(α,β)
n (x|q),

where Dq
x (α, β) is an explicit known q-difference operator.
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The paper is organized as follows. In section 2, we give the factorization of the q-
difference equations for the continuous q-Jacobi polynomials. Section 3 is devoted to some
concluding remarks where we discussed the limit cases of parameters associated with the
factorization, leading to some relevant classes of orthogonal polynomials.

2. Factorization of the continuous q-Jacobi polynomials

In this section, we study the Sturm–Liouville type of q-difference equation for the continuous
q-Jacobi polynomials. We adopt the common conventions and notations on q-series. So, we
always assume that 0 < q < 1 and use the following notations of the q-shifted factorial:

(x; q)0 = 1 (x; q)n =
n∏

j=1

(1 − qj−1x) n = 1, 2, . . . ,∞ (1)

(x, y; q)n = (x; q)n(y; q)n. (2)

The basis hypergeometric series rφs is defined as follows [6]:

rφs

⎛
⎝a1, a2, . . . , ar

; q, x

b1, b2, . . . , bs

⎞
⎠ (3)

=
+∞∑
k=0

(a1; q)k . . . (ar; q)k

(q; q)k(b1; q)k . . . (bs; q)k
[(−1)kqk(k−1)/2]1+s−rxk. (4)

It is well known (see, for example, [7]) that for α � −1/2 and β � −1/2, the continuous
q-Jacobi polynomials

P (α,β)
n (x|q) = (qα+1; q)n

(q; q)n

× 4φ3

⎛
⎝q−n, qn+α+β+1, qα/2+1/4 eiθ , qα/2+1/4 e−iθ

; q, q

qα+1,−q(α+β+1)/2,−q(α+β+2)/2

⎞
⎠ x = cos θ (5)

are orthogonal on the finite interval −1 � x := cos θ � 1:

1

2π

∫ 1

−1
w̃(x; qα, qβ |q)P (α,β)

n (x|q)P (α,β)
m (x|q) dx

= (q(α+β+2)/2, q(α+β+3)/2; q)∞
(q, qα+1, qβ+1,−q(α+β+1)/2,−q(α+β+2)/2; q)∞

× (1 − qα+β+1)(qα+1, qβ+1,−q(α+β+3)/2; q)n

(1 − q2n+α+β+1)(q, qα+β+1,−q(α+β+1)/2; q)n
q(α+1/2)nδnm (6)

with respect to the weight function

w̃(x; qα, qβ |q)

= 1

sin θ

(e2iθ , e−2iθ ; q)∞
(a eiθ , b eiθ ; q)∞(a e−iθ , b e−iθ ; q)∞(c eiθ , d eiθ ; q)∞(c e−iθ , d e−iθ ; q)∞

(7)

where

a = qα/2+1/4, b = qα/2+3/4, c = −qβ/2+1/4, d = −qβ/2+3/4. (8)
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These polynomials satisfy the q-difference equation

Dq

[
w̃(x; qα+1, qβ+1|q)DqP

(α,β)
n (x|q)

]

= 4q(1 − q−n)(1 − qn+α+β+1)

(1 − q)2
w̃(x; qα, qβ |q)P (α,β)

n (x|q) (9)

written on a self-adjoint form [9]. The Dq in (9) is the conventional notation for the Askey–
Wilson divided-difference operator defined as

Dqf (x) := δqf (x)

δqx

δqg(eiθ ) := g(q1/2 eiθ ) − g(q−1/2 eiθ ), f (x) ≡ g(eiθ ), x = cos θ.

(10)

In terms of the shift operators with respect to the variable θ , the operator Dq can be explicitly
expressed as

Dqf (x) =
√

q

i(1 − q)

1

sin θ

(
ei ln q1/2∂θ − e−i ln q1/2∂θ

)
f (x) ∂θ = d

dθ
. (11)

In order to write the q-difference equation for the continuous q-Jacobi polynomials in the
factorized form, let us eliminate the weight function w̃(x; qα, qβ |q) from (9) using the relation

exp(±i ln q1/2∂θ )w̃(x; qα+1, qβ+1|q)

= −e±2iθ

√
q

(1 − a e∓iθ )(1 − b e∓iθ )(1 − c e∓iθ )(1 − d e∓iθ )w̃(x; qα, qβ |q). (12)

The validity of (12) is straightforwardly checked upon using the explicit expression (7) and
the identities

b = q1/2a, d = q1/2c. (13)

Thus, combining (12) and (9) results in the following q-difference equation for the
continuous q-Jacobi polynomials P

(α,β)
n (x|q), which does not explicitly contain the weight

function w̃(x; qα, qβ |q)

1

2i sin θ

[
u(eiθ ) e−iθ

1 − q e2iθ
(1 − e−i ln q∂θ ) +

u(e−iθ ) eiθ

1 − q e−2iθ
(ei ln q∂θ − 1)

]
P (α,β)

n (x|q)

= (q−n − 1)(1 − qn+α+β+1)P (α,β)
n (x|q), (14)

where

u(eiθ ) = (1 − a eiθ )(1 − b eiθ )(1 − c eiθ )(1 − d eiθ ).

In connection with equation (14), let us point out that Koornwinder [10] has recently studied in
detail raising and lowering relations for the Askey–Wilson polynomials pn(x; a′, b′, c′, d ′|q).
For a′ = a, b′ = b, c′ = c and d ′ = d, the Askey–Wilson polynomials reduce to the continuous
q-Jacobi polynomials. One can readily check that (14) coincides with ‘ the second-order q-
difference formula ’ (4.6) in [10], upon taking into account that variables z is equal to eiθ and
a, b, c, d are replaced by their values given in (8).

We are now in a position to show that (14) admits a factorization. Indeed, provided the
trigonometric identities

e±iθ

2i sin θ
= ± 1

1 − e∓2iθ
(15)
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the lhs of (14) can be expanded as

1

2i sin θ

[
u(eiθ ) e−iθ

1 − q e2iθ
(1 − e−i ln q∂θ ) +

u(e−iθ ) eiθ

1 − q e−2iθ
(ei ln q∂θ − 1)

]
P (α,β)

n (x|q)

=
[
(1 − a e−iθ )(1 − c e−iθ )

(1 − e−2iθ )
ei ln q1/2∂θ

(
(1 − a e−iθ )(1 − c e−iθ )

(1 − e−2iθ )
ei ln q1/2∂θ

)

+
(1 − a eiθ )(1 − c eiθ )

(1 − e2iθ )
e−i ln q1/2∂θ

(
(1 − a eiθ )(1 − c eiθ )

(1 − e2iθ )
e−i ln q1/2∂θ

)

− u(eiθ )

(1 − e2iθ )(1 − q e2iθ )
− u(e−iθ )

(1 − e−2iθ )(1 − q e−2iθ )

]
P (α,β)

n (x|q) (16)

where use has been made of the identity

(1 − b e∓iθ )(1 − d e∓iθ )

1 − q e∓2iθ
e±i ln q1/2∂θ = e±i ln q1/2∂θ

(1 − a e∓iθ )(1 − c e∓iθ )

1 − e∓2iθ
. (17)

After tedious computation, taking into account (13), the rhs expression in square brackets in
(16) can be rewritten as

(
Dq

x (α, β)
)2

+
(−1 + ac)(q − bd)

q
. (18)

Hence, (14) becomes(
Dq

x (α, β)
)2

P (α,β)
n (x|q) = (q−n + 2q(α+β+1)/2 + qn+α+β+1)P (α,β)

n (x|q), (19)

where the q-difference operator Dq
x (α, β) is given by

Dq
x (α, β) = (1 − a e−iθ )(1 − c e−iθ )

1 − e−2iθ
ei ln q1/2∂θ +

(1 − a eiθ )(1 − c eiθ )

1 − e2iθ
e−i ln q1/2∂θ . (20)

Finally, taking into account that the factor on the rhs of (19) can be written as q−n+2q(α+β+1)/2 +
qn+α+β+1 = (q−n/2 + q(n+α+β+1)/2)2, one arrives at the following factorized form of (19):(

Dq
x (α, β)

)2
P (α,β)

n (x|q) = (q−n/2 + q(n+α+β+1)/2)2P (α,β)
n (x|q). (21)

Note that the operator
(
Dq

x (α, β)
)2

represents, as (21) implies, an unbounded operator on
the Hilbert space L2(S1) with the scalar product

〈g1, g2〉 = 1

2π

∫ 1

−1
g1(x)g2(x)w̃(x; qα, qβ |q) dx (22)

where the weight function w̃(x; qα, qβ |q) is defined by (7). In view of (6) the polynomials

pn(x) = (dn(α, β))−1/2P (α,β)
n (x|q) n = 0, 1, 2, . . . , (23)

where

dn(α, β) = (q(α+β+2)/2, q(α+β+3)/2; q)∞
(q, qα+1, qβ+1,−q(α+β+1)/2,−q(α+β+2)/2; q)∞

× (1 − qα+β+1)(qα+1, qβ+1,−q(α+β+3)/2; q)n

(1 − q2n+α+β+1)(q, qα+β+1,−q(α+β+1)/2; q)n
q(α+1/2)n (24)

coçnstitute an orthonormal basis in this space such that we will have the relation(
Dq

x (α, β)
)2

pn(x) = (q−n/2 + q(n+α+β+1)/2)2pn(x). In particular, the operator
(
Dq

x (α, β)
)2

is defined on the linear span H of the basis function pn, which is everywhere dense in L2(S1).
We close

(
Dq

x (α, β)
)2

with respect to the scalar product (22). Since
(
Dq

x (α, β)
)2

is diagonal
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with respect to the orthonormal basis pn(x), n = 0, 1, 2, . . . , its closure
(
Dq

x (α, β)
)2

is a self-

adjoint operator (see [8], chapter 6). We can take a square root of the operator
(
Dq

x (α, β)
)2

.
This square root is a self-adjoint operator too and has the same eigenfunctions as the operator(
Dq

x (α, β)
)2

does. We denote this operator by Dq
x (α, β). It is evident that, on the subspace H,

the operator Dq
x (α, β) coincides with the operator Dq

x (α, β). Hence, the operator Dq
x (α, β) is

a well-defined operator on the Hilbert space L2(S1) with everywhere dense subspace of the
definition. Moreover, according to the definition of a self-adjoint operator (see [8], chapter 6),
we have

Dq
x (α, β)pn(x) = (q−n/2 + q(n+α+β+1)/2)pn(x). (25)

This means that the continuous q-Jacobi polynomials P
(α,β)
n (x|q) are in fact governed by

a simpler q-difference equation

Dq
x (α, β)P (α,β)

n (x|q) = (q−n/2 + q(n+α+β+1)/2)P (α,β)
n (x|q). (26)

Observe that the q-difference operator Dq
x (α, β) in (26) may be expressed in terms of the

Askey–Wilson operator Dq defined in (10), as

Dq
x (α, β) = (1 − ac)Aq +

1 − q

2
√

q
[(1 + ac)x − (a + c)] Dq (27)

where Aq is the so-called averaging difference operator defined in [7] as

(Aqf )(x) = 1
2

(
ei ln q1/2∂θ + e−i ln q1/2∂θ

)
f (x) ≡ cos(ln q1/2∂θ )f (x). (28)

The q-difference equation (26) is consistent with the generating function [6]

2φ1

⎛
⎝a eiθ , d eiθ

q; e−iθ t

ad

⎞
⎠ 2φ1

⎛
⎝b e−iθ , c e−iθ

q; eiθ t

bc

⎞
⎠

=
∞∑

n=0

(−q(α+β+1)/2; q)n

(−q(α+β+2)/2; q)n

P
(α,β)
n (x|q)

q(2α+1)n/4
tn (29)

for the continuous q-Jacobi polynomials P
(α,β)
n (x|q).

Indeed, by applying the q-difference operator Dq
x (α, β) defined in (20), and by using (13)

and the property [6]

2φ1

⎛
⎝e, f

q; y

g

⎞
⎠ = (efg−1y; q)∞

(y; q)∞
2φ1

⎛
⎝e−1g, f −1g

q; efg−1y

g

⎞
⎠ (30)

it is straightfoward to verify that
∞∑

n=0

(−q(α+β+1)/2; q)n

(−q(α+β+2)/2; q)n

Dq
x (α, β)(P

(α,β)
n (x|q))

q(2α+1)n/4
tn

= Dq
x (α, β)

⎛
⎝2φ1

⎛
⎝a eiθ , d eiθ

q; e−iθ t

ad

⎞
⎠ 2φ1

⎛
⎝b e−iθ , c e−iθ

q; eiθ t

bc

⎞
⎠

⎞
⎠

= 2φ1

⎛
⎝a eiθ , d eiθ

q; q−1/2 e−iθ t

ad

⎞
⎠ 2φ1

⎛
⎝b e−iθ , c e−iθ

q; q−1/2 eiθ t

bc

⎞
⎠

5
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− ac2φ1

⎛
⎝a eiθ , d eiθ

q; q1/2 e−iθ t

ad

⎞
⎠ 2φ1

⎛
⎝b e−iθ , c e−iθ

q; q1/2 eiθ t

bc

⎞
⎠

=
∞∑

n=0

(−q(α+β+1)/2; q)n

(−q(α+β+2)/2; q)n

P
(α,β)
n (x|q)

q(2α+1)n/4
(q−n/2 + q(α+β+1)/2qn/2)tn. (31)

Equating coefficients of like powers of t on the extremal sides of (31), one completes the
another proof of equation (26).

In the limit q → 1, the continuous q-Jacobi polynomials reduce to the Jacobi polynomials
[6]:

lim
q→1

P (α,β)
n (x|q) = P (α,β)

n (x). (32)

Then, in the limit q → 1, the q-difference equation (9) reduces to the following second-order
differential equation{

(1 − x2)
d2

dx2
+ [β − α − (α + β + 2)x]

d

dx
+ n(n + α + β + 1)

}
P (α,β)

n (x) = 0. (33)

This fact can be also expressed as the following limit property of the q-difference operator
Dq

x (α, β) in (20):

lim
q→1

{
2

(1 − q)2

[(
1 + q(α+β+1)/2

)
I − Dq

x (α, β)
]}

= 1

2

{
[β − α − (α + β + 2)x]

d

dx
+ (1 − x2)

d2

dx2

}
, (34)

where I is the identity operator.

3. Concluding remarks

The q-difference equation (26) for the continuous q-Jacobi polynomials, derived in the previous
section, does actually contain some special and limit cases of the parameters α and β, which
correspond to well-known families of q-polynomials. In the case α = β, the continuous
q-Jacobi polynomials P (α,β)(x|q) reduce to, up to a normalization factor, the continuous q-
ultraspherical polynomials Cn(x;β ′|q) where β ′ = qα+1/2. Hence, the above results appear
as an extension of the work by Area et al [11]. One can then easily deduce q-Hermite and
q-Legendre polynomials as done in [11].

Finally, it is noteworthy that, in the limit case β → ∞, the continuous q-Jacobi
polynomials reduce to continuous q-Laguerre polynomials P (α)

n (x|q).
This work was mainly focused on the factorization of q-continuous Jacobi polynomials.

We have shown that these polynomials admit a factorization of the form given by Atakishiyev
et al (see equation (14) in [5]). The results obtained here essentially come from parameter
relations (13) which are not satisfied by all classes of Askey–Wilson polynomials. Hence, the
search for a unified framework of extending the above formalism to the whole Askey tableau
remains a real challenge. Such a goal deserves serious consideration.
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